117 lines
4.2 KiB
Python
Raw Normal View History

2025-05-18 23:40:12 +08:00
from flask import Flask, request, jsonify
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import json
app = Flask(__name__)
# 创建一个全局的模型缓存字典
model_cache = {}
# 分割文本块
def split_text(text, block_size, overlap_chars, delimiter):
chunks = text.split(delimiter)
text_blocks = []
current_block = ""
for chunk in chunks:
if len(current_block) + len(chunk) + 1 <= block_size:
if current_block:
current_block += " " + chunk
else:
current_block = chunk
else:
text_blocks.append(current_block)
current_block = chunk
if current_block:
text_blocks.append(current_block)
overlap_blocks = []
for i in range(len(text_blocks)):
if i > 0:
overlap_block = text_blocks[i - 1][-overlap_chars:] + text_blocks[i]
overlap_blocks.append(overlap_block)
overlap_blocks.append(text_blocks[i])
return overlap_blocks
# 文本向量化
def vectorize_text_blocks(text_blocks, model):
return model.encode(text_blocks)
# 文本检索
def retrieve_top_k(query, knowledge_base, k, block_size, overlap_chars, delimiter, model):
# 将知识库拆分为文本块
text_blocks = split_text(knowledge_base, block_size, overlap_chars, delimiter)
# 向量化文本块
knowledge_vectors = vectorize_text_blocks(text_blocks, model)
# 向量化查询文本
query_vector = model.encode([query]).reshape(1, -1)
# 计算相似度
similarities = cosine_similarity(query_vector, knowledge_vectors)
# 获取相似度最高的 k 个文本块的索引
top_k_indices = similarities[0].argsort()[-k:][::-1]
# 返回文本块和它们的向量
top_k_texts = [text_blocks[i] for i in top_k_indices]
top_k_embeddings = [knowledge_vectors[i] for i in top_k_indices]
return top_k_texts, top_k_embeddings
@app.route('/vectorize', methods=['POST'])
def vectorize_text():
# 从请求中获取 JSON 数据
data = request.json
print(f"Received request data: {data}") # 调试输出请求数据
text_list = data.get("text", [])
model_name = data.get("model_name", "msmarco-distilbert-base-tas-b") # 默认模型
delimiter = data.get("delimiter", "\n") # 默认分隔符
k = int(data.get("k", 3)) # 默认检索条数
block_size = int(data.get("block_size", 500)) # 默认文本块大小
overlap_chars = int(data.get("overlap_chars", 50)) # 默认重叠字符数
if not text_list:
return jsonify({"error": "Text is required."}), 400
# 检查模型是否已经加载
if model_name not in model_cache:
try:
model = SentenceTransformer(model_name)
model_cache[model_name] = model # 缓存模型
except Exception as e:
return jsonify({"error": f"Failed to load model: {e}"}), 500
model = model_cache[model_name]
top_k_texts_all = []
top_k_embeddings_all = []
# 如果只有一个查询文本
if len(text_list) == 1:
top_k_texts, top_k_embeddings = retrieve_top_k(text_list[0], text_list[0], k, block_size, overlap_chars, delimiter, model)
top_k_texts_all.append(top_k_texts)
top_k_embeddings_all.append(top_k_embeddings)
elif len(text_list) > 1:
# 如果多个查询文本,依次处理
for query in text_list:
top_k_texts, top_k_embeddings = retrieve_top_k(query, text_list[0], k, block_size, overlap_chars, delimiter, model)
top_k_texts_all.append(top_k_texts)
top_k_embeddings_all.append(top_k_embeddings)
# 将嵌入向量ndarray转换为可序列化的列表
top_k_embeddings_all = [[embedding.tolist() for embedding in embeddings] for embeddings in top_k_embeddings_all]
print(f"Top K texts: {top_k_texts_all}") # 打印检索到的文本
print(f"Top K embeddings: {top_k_embeddings_all}") # 打印检索到的向量
# 返回 JSON 格式的数据
return jsonify({
"topKEmbeddings": top_k_embeddings_all # 返回嵌入向量
})
if __name__ == '__main__':
app.run(host="0.0.0.0", port=5000, debug=True)